6 research outputs found

    Transient protein interactions: the case of pseudoazurin and nitrite reductase

    Get PDF
    Nuclear Magnetic Resonance study of the structural and dynamic characteristics of the transient complex between pseudoazurin and nitrite reductase.UBL - phd migration 201

    Calpain 3 Is a Rapid-Action, Unidirectional Proteolytic Switch Central to Muscle Remodeling

    Get PDF
    Calpain 3 (CAPN3) is a cysteine protease that when mutated causes Limb Girdle Muscular Dystrophy 2A. It is thereby the only described Calpain family member that genetically causes a disease. Due to its inherent instability little is known of its substrates or its mechanism of activity and pathogenicity. In this investigation we define a primary sequence motif underlying CAPN3 substrate cleavage. This motif can transform non-related proteins into substrates, and identifies >300 new putative CAPN3 targets. Bioinformatic analyses of these targets demonstrate a critical role in muscle cytoskeletal remodeling and identify novel CAPN3 functions. Among the new CAPN3 substrates are three E3 SUMO ligases of the Protein Inhibitor of Activated Stats (PIAS) family. CAPN3 can cleave PIAS proteins and negatively regulates PIAS3 sumoylase activity. Consequently, SUMO2 is deregulated in patient muscle tissue. Our study thus uncovers unexpected crosstalk between CAPN3 proteolysis and protein sumoylation, with strong implications for muscle remodeling

    Transient protein interactions: the case of pseudoazurin and nitrite reductase

    No full text
    Nuclear Magnetic Resonance study of the structural and dynamic characteristics of the transient complex between pseudoazurin and nitrite reductase

    A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen

    No full text
    The identification of human broadly neutralizing antibodies (bnAbs) targeting the hemagglutinin (HA) stem revitalized hopes of developing a universal influenza vaccine. Using a rational design and library approach, we engineered stable HA stem antigens ("mini-HAs") based on an H1 subtype sequence. Our most advanced candidate exhibits structural and bnAb binding properties comparable to those of full-length HA, completely protects mice in lethal heterologous and heterosubtypic challenge models, and reduces fever after sublethal challenge in cynomolgus monkeys. Antibodies elicited by this mini-HA in mice and nonhuman primates bound a wide range of HAs, competed with human bnAbs for HA stem binding, neutralized H5N1 viruses, and mediated antibody-dependent effector activity. These results represent a proof of concept for the design of HA stem mimics that elicit bnAbs against influenza A group 1 viruse
    corecore